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Semi-Supervised Learning




Classic Paradigm Insufficient Nowadays

Modern applications: massive amounts of raw data.

Only a tiny fraction can be annotated by human experts.

Protein sequences Billions of webpages Images



Modern ML: New Learning Approaches

Modern applications: massive amounts of raw data.

Techniques that best utilize data, minimizing need for expert/human
intervention.

supervised Learning Semi-Supervised Learning



Semi-Supervised Learning
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Semi-Supervised Learning

Major topic of research in ML.

* Several methods have been developed to try to use
unlabeled data to improve performance, e.q.:

— Transductive SVM [Joachims '99]

— Co-training [Blum & Mitchell '98]

— Graph-based methods [B&c01], [2ZGLO3]

Today: discuss these methods.
Very interesting, they all exploit unlabeled data in different,

very interesting and creative ways.



Margins based regularity

Target goes through low density regions (large margin).
« assume we are looking for linear separator
* belief: should exist one with large separation
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33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
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Introduction

Semi-supervised learning (SSL) seeks to largely alleviate the need for labeled data by allowing a model to leverage
unlabeled data.

Semi-supervised techniques:
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« Generic Model: A generic model p, ...V | X, 6) produces a distribution over class labels y for an input x
with parameters 6.



Background

. . Co-Training
Many recent approaches for semi-supervised

learning add a loss term which is computed v my,
on unlabeled data and encourages the model argminhl, +@ment(hl(@
1=1 i= i=1

to generalize better to unseen data.

Each of them has small Regularizer to encourage
labeled error agreement over unlabeled dat

In much recent work, the loss term falls into one of three classes:
- Entropy minimization encourages the model to output confident predictions on unlabeled data;

- Consistency regularization encourages the model to produce the same output distribution when its inputs
are perturbed;

- Genericregularization encourages the model to generalize well and avoid overfitting the training data.




Background

1. Consistency Regularization

Dog Cat Fish Frog
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|Pmodel (v | Augment(x); 8) — Pmodel(y | Augment(x); 6’)||g

Augment(x) is a stochastic transformation, so the two terms are not identical.
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Background

2. Entropy Minimization

Density assumption: classifier's decision boundary should not pass through high-density regions.

x s
—— Supervised algorithm decision boundary

———— Optimal decision boundary




Background

2. Entropy Minimization
« One way to enforce this is to require that the classifier output low-entropy predictions on unlabeled data.

This is done explicitly with a loss term which minimizes the entropy of p,.,4.((V / x; 6) for unlabeled data x.

- Minimize the entropy of unlabeled data.

[0.01, 0.99]



Background

3. Generic Regularization

Regularization refers to the general approach of imposing a constraint on a model to make it harder to
memorize the training data and therefore hopefully make it generalize better to unseen data.

We use weight decay which penalizes the L, norm of the model parameters.
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- ___________________________________________________________________________________
MixMatch

MixMatch introduces a unified loss term for unlabeled data that seamlessly reduces entropy while
maintaining consistency and remaining compatible with traditional regularization techniques.
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MixMatch

MixMatch introduces a unified loss term for unlabeled data that seamlessly reduces entropy while
maintaining consistency and remaining compatible with traditional regularization techniques.

Given a batch X of labeled examples with one-hot targets (representing one of L possible labels) and an
equally-sized batch U of unlabeled examples.

p X u

Labeled Unlabeled
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MixMatch

MixMatch introduces a unified loss term for unlabeled data that seamlessly reduces entropy while
maintaining consistency and remaining compatible with traditional regularization techniques.

Given a batch X of labeled examples with one-hot targets (representing one of L possible labels) and an
equally-sized batch U of unlabeled examples.

p X u

Labeled Unlabeled

MixMatch produces a processed batch of augmented labeled examples X’ and a batch of augmented
unlabeled examples with “guessed” labels U’

Strongly l

Augmentation P Augmented Augmentation - Strongly
P X 'I X Labeled U > augmented
Unlabeled

Labeled Unlabeled

U’and X’are then used in computing separate labeled and unlabeled loss terms



MixMatch

1. Data Augmentation

For each unlabeled example in U, MixMatch produces a “guess” for the example's label using the model’s

predictions.

This guess is later used in the unsupervised loss term.
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To do so, we compute the average of the model's predicted class distributions across all the K

augmentations of u, by

Using data augmentation to obtain an artificial target for an unlabeled example is common in consistency

regularization methods.
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MixMatch
2. Label Guessing and Sharpening

In generating a label guess, we perform one additional step inspired by the success of entropy minimization
in semi-supervised learning.

Given the average prediction over augmentations g,, we apply a sharpening function to reduce the entropy
of the label distribution.

The effect of sharpening on randomly generated distribution
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MixUp

Label

[1.0, 0.0]

cat dog

r = Aﬂfi + (l p— /\).’Ej,
gy = Ayi+ (1= ANy,

where A € [0, 1] is a random number

[0.0, 1.0]

cat dog

[0.7, 0.3]
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MixMatch Diagram
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MixMatch Diagram
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MixMatch Diagram
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MixMatch Diagram
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MixMatch Diagram
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MixMatch Diagram
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MixMatch

U’and X’are then used in computing separate labeled and unlabeled loss terms.

More formally, the combined loss L for semi-supervised learning is defined as

XU = MixMatch(X, U, T. K, a)
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where H(p, g) is the cross-entropy between distributions pand g, and T, K, a, and U are hyperparameters.



Algorithm 1 MixMatch takes a batch of labeled data X and a batch of unlabeled data ¢/ and produces
a collection X’ (resp. U") of processed labeled examples (resp. unlabeled with guessed labels).
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Input: Batch of labeled examples and their one-hot labels X = ((x4.p5);0 € (1,..., B)), batch of

unlabeled examples U = (up; b € (1.. ... )) kharpening temperature 7', number of augmentations K.
Beta distribution parameter o for MixUp.
forb=1to B do

Tp = Augment(xp) // Apply data augmentation to xy

for £ =1to K do

up . = Augment(uy) // Apply k" round of data augmentation to uy,
end for
Jp = % > & Pmodel(¥ | Up,i;0) // Compute average predictions across all augmentations of uy,
gp = Sharpen(qp,T") // Apply temperature sharpening to the average prediction (see eq. l )
end for
X = ((:f:b pp):be(1,... ,B)) / | Augmented labeled examples and their labels
U = ((ub kqp)ibE(1,..., B) k € ( ..... K )) /| Augmented unlabeled examples, guessed labels

W = Shuﬂie((‘oncat(ﬁ;’ ZA’)) /| Combine and shuffle labeled and unlabeled data

. X = (MixUp(&;, Wi);i € (l ..... |£’C’ )) // Apply MixUp 1o labeled data and entries from W
: U = (MixUp (Z/f W. |X|) 1€ (1,..., |Z/f|)) // Apply MixUp to unlabeled data and the rest of W
: return X', U’




Self-Supervised Learning
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Self-Supervised Learning

« Self-supervised learning learns from unlabeled sample data.
« Self-supervised learning obtains supervisory signals from the data itself.

* |t can beregarded as an intermediate form between supervised and unsupervised learning.

The model learns in two steps.
1) The task is solved based on pseudo-labels which help to initialize the network weights.

2) The actual task is performed with supervised or unsupervised learning.

supervised Learning Unupervised Learning self-supervised Learning



Contrastive Learning
The goal of contrastive representation learning is to learn such an embedding space in
which similar sample pairs stay close to each other while dissimilar ones are far apart.




Contrastive Learning
The goal of contrastive representation learning is to learn such an embedding space in
which similar sample pairs stay close to each other while dissimilar ones are far apart.
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Contrastive Learning
The goal of contrastive representation learning is to learn such an embedding space in
which similar sample pairs stay close to each other while dissimilar ones are far apart.
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Contrastive Learning
The goal of contrastive representation learning is to learn such an embedding space in
which similar sample pairs stay close to each other while dissimilar ones are far apart.
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Contrastive Learning
The goal of contrastive representation learning is to learn such an embedding space in
which similar sample pairs stay close to each other while dissimilar ones are far apart.
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Contrastive Learning
The goal of contrastive representation learning is to learn such an embedding space in
which similar sample pairs stay close to each other while dissimilar ones are far apart.
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Self / Semi-Supervised Learning



Self/Semi-Supervised Learning

Self/Semi-Supervised Learning is a semi-supervised learning method that consists of two stages:

1) Self-supervised pre-training based on contrastive learning

2) Semi-supervised finetuning based on augmentation consistency regularization.

@ﬁﬁ@ @Q‘%@
eS¢ *@ S
$ g & $ L @.

supervised Learning Unupervised Learning Ssemi-Supervised Learning Self-Supervised Learning Self/Semi-Supervised Learning



37th International Conference on Machine Learning (ICML2020), Vienna, Austria

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen' Simon Kornblith! Mohammad Norouzi' Geoffrey Hinton '

Google Research, Brain Team



Simple framework for Contrastive Learning (SimCLR)

Representation
Network
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ImageNet
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34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada

Big Self-Supervised Models are
Strong Semi-Supervised Learners

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, Geoffrey Hinton
Google Research, Brain Team



Big Self-Supervised Models are Strong Semi-Supervised Learners (SimCLRv2)

1) Unsupervised or self-supervised pretraining
2) Supervised fine-tuning
3) Distillation using unlabeled data

Unsupervised pretraining
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head 1 Supervised Self-training /
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» Distillation of
task predictions

™ fine-tuning

Task-agnostic

- Task-specific
Big CNN oM
Small fraction of
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data data



Other works

ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring

[Google Research]
International Conference on Learning Representations (ICLR 2020)

FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence

[Google Research]
34th Conference on Neural Information Processing Systems (NeurlPS 2020), Vancouver, Canada.

SelfMatch: Combining Contrastive Self-Supervision and Consistency for Semi-Supervised Learning

[Samsung]
34th Conference on Neural Information Processing Systems (NeurlPS 2020), Vancouver, Canada.



