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Learning. Jerry Zhu, 2010  
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Training. Avrim  Blum, Tom Mitchell. COLT  1998.  
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Machine Learning Paradigms  
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   Labeled Examples   

Learning 
Algorithm 

Expert / Oracle 

Data 
Source 

Alg.outputs 

Distribution D on X 

c* : X ! Y 

(x1,c*(x1)),…, (xm,c*(xm)) 

h : X ! Y 

 Goal:  h has small error over D. 

 errD h = Pr
x~ D
(h x ≠ c∗(x)) 

 Sl={(x1, y1), …,(xml , yml)}  

xi drawn i.i.d from D, yi = c
∗(xi) 

Fully Supervised Learning 



Two Core Aspects of Supervised Learning 

Algorithm Design. How to optimize? 

Automatically generate rules that do well on observed data. 

Confidence Bounds, Generalization 

Confidence for rule effectiveness on future data. 

Computation 

(Labeled) Data 

• E.g.: Naïve Bayes, logistic regression, SVM, Adaboost, etc. 

• VC-dimension, Rademacher complexity, margin based bounds, etc. 



Classic Paradigm Insufficient Nowadays 

Modern applications: massive amounts of raw data. 

Only a tiny fraction can be annotated by human experts. 

Billions of webpages Images Protein sequences 



Modern applications: massive amounts of raw data. 

Modern ML: New Learning Approaches 

Expert 

• Semi-supervised Learning, (Inter)active Learning. 

Techniques that best utilize data, minimizing need for 

expert/human intervention. 

Paradigms where there has been great progress. 



                 Labeled Examples   

Semi-Supervised Learning 

Learning 
Algorithm 

Expert / Oracle 

Data Source 

Unlabeled 
examples 

Algorithm outputs a classifier  

Unlabeled 
examples 

 Sl={(x1, y1), …,(xml , yml)}  

 Su={x1, …,xmu} drawn i.i.d from D 

xi drawn i.i.d from D, yi = c
∗(xi) 

 Goal:  h has small error over D. 

 errD h = Pr
x~ D
(h x ≠ c∗(x)) 



Semi-supervised Learning 

Test of time 

awards at ICML! 

Workshops  [ICML ’03, ICML’ 05, …] 

• Semi-Supervised Learning, MIT 2006 
O. Chapelle, B. Scholkopf and A. Zien (eds)  

Books: 

• Introduction to Semi-Supervised Learning, 
Morgan & Claypool, 2009 Zhu  & Goldberg 

• Major topic of research in ML. 

• Several methods have been developed to try to use 
unlabeled data to improve performance, e.g.: 

– Transductive SVM [Joachims ’99] 
 

– Co-training [Blum & Mitchell ’98] 
 

– Graph-based methods [B&C01], [ZGL03] 



Semi-supervised Learning 

Test of time 

awards at ICML! 

• Major topic of research in ML. 

• Several methods have been developed to try to use 
unlabeled data to improve performance, e.g.: 

– Transductive SVM [Joachims ’99] 
 

– Co-training [Blum & Mitchell ’98] 
 

– Graph-based methods [B&C01], [ZGL03] 

Both wide spread applications and solid foundational 
understanding!!! 



Semi-supervised Learning 

Test of time 

awards at ICML! 

• Major topic of research in ML. 

• Several methods have been developed to try to use 
unlabeled data to improve performance, e.g.: 

 

– Co-training [Blum & Mitchell ’98] 
 

– Graph-based methods [B&C01], [ZGL03] 

Today: discuss these methods. 

Very interesting, they all exploit unlabeled data in 
different, very interesting and creative ways. 

– Transductive SVM [Joachims ’99] 



Semi-supervised SVM 
[Joachims ’99] 
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Transductive SVM 
SVM 

Target goes through low density regions (large margin). 

• assume we are looking for linear separator 
• belief: should exist one with large separation 



Transductive Support Vector Machines 

Optimize for the separator with large margin wrt labeled and 
unlabeled data. [Joachims ’99] 

 Su={x1, …,xmu} 

 Input: Sl={(x1, y1), …,(xml , yml)}  



Transductive Support Vector Machines 

Optimize for the separator with large margin wrt labeled and 
unlabeled data. [Joachims ’99] 

argminw w
2
 s.t.: 

  
• yi w ⋅ xi ≥ 1, for all i ∈ {1, … ,ml}  
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Transductive Support Vector Machines 

Optimize for the separator with large margin wrt labeled and 
unlabeled data. [Joachims ’99] 
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2
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 Input: Sl={(x1, y1), …,(xml , yml)}  

Find a labeling of the unlabeled sample and 𝑤 s.t. 𝑤 separates both 
labeled and unlabeled data with maximum margin. 



Transductive Support Vector Machines 

argminw w
2
+ 𝐶  𝜉𝑖𝑖  + 𝐶   𝜉𝑢 𝑢  
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Find a labeling of the unlabeled sample and 𝑤 s.t. 𝑤 separates both 
labeled and unlabeled data with maximum margin. 

Optimize for the separator with large margin wrt labeled and 
unlabeled data. [Joachims ’99] 



Transductive Support Vector Machines 

Optimize for the separator with large margin wrt labeled and 
unlabeled data. 

argminw w
2
+ 𝐶  𝜉𝑖𝑖  + 𝐶   𝜉𝑢 𝑢  

• yi w ⋅ xi ≥ 1-𝜉𝑖, for all i ∈ {1, … ,ml}  

 Su={x1, …,xmu} 

•  yu w ⋅ xu ≥ 1 −  𝜉𝑢 , for all u ∈ {1,… ,mu}  

•  yu ∈ {−1, 1} for all u ∈ {1,… ,mu}   

0 

 Input: Sl={(x1, y1), …,(xml , yml)}  

NP-hard….. Convex only after you guessed the labels… too many 
possible guesses… 



Transductive Support Vector Machines 

Optimize for the separator with large margin wrt labeled and 
unlabeled data. 

 Heuristic (Joachims) high level idea: 

Keep going until no more improvements. Finds a locally-optimal solution. 

• First maximize margin over the labeled points 

• Use this to give initial labels to unlabeled points 
based on this separator. 

• Try flipping labels of unlabeled points to see if doing 
so can increase margin 



Different type of underlying regularity assumption:  
Consistency or Agreement Between Parts 

[Blum & Mitchell ’98] 

Co-training 



Co-training: Self-consistency 

My Advisor Prof. Avrim Blum My Advisor Prof. Avrim Blum 

x1- Text info x2- Link info x - Link info & Text info 

x = h x1, x2 i 

Agreement between two parts : co-training [Blum-Mitchell98]. 

-  examples contain two sufficient sets of features, x = h x1, x2 i  

For example, if we want to classify web pages: 

-  belief: the parts are consistent, i.e. 9 c1, c2 s.t. c1(x1)=c2(x2)=c*(x) 

as faculty member homepage or not 



my advisor 

Idea: Use unlabeled data to  propagate learned information. 

 

Idea: Use small labeled sample to learn initial rules. 
• E.g., “my advisor” pointing to a page is a good indicator it is a 

faculty home page. 
 

• E.g., “I am teaching” on a page is a good indicator it is a faculty 
home page. 

Iterative Co-Training 



Idea: Use unlabeled data to  propagate learned information. 

 

Idea: Use small labeled sample to learn initial rules. 
• E.g., “my advisor” pointing to a page is a good indicator it is a 

faculty home page. 
 

• E.g., “I am teaching” on a page is a good indicator it is a faculty 
home page. 

Iterative Co-Training 

The co-training algorithm trains two predictors:

 

h(1) --> x(1)                h(2) --> x(2)

If h(1) confidently predicts the label of an unlabeled instance x
then  the  instance-label  pair  (x,  h(1)(x))  is  added  to  h(2)’s
 labeled data, and vice versa.

Note this promotes h(1) and h(2) to predict the same on x.



Co-training/Multi-view SSL: Direct 
Optimization of Agreement 

argminh1,h2    l(hl xi , yi)

ml

i=1

2

l=1

+ C agreement(h1 xi , h2 xi )

mu

i=1

 

 Su={x1, …,xmu} 
 Input: Sl={(x1, y1), …,(xml , yml)}  

Each of them has small 
labeled error 

Regularizer to encourage 
agreement over unlabeled dat 



Co-training/Multi-view SSL: Direct 
Optimization of Agreement 

 Su={x1, …,xmu} 
 Input: Sl={(x1, y1), …,(xml , yml)}  

• l(h xi , yi) loss function 

• E.g., square loss l h xi , yi = yi − ℎ xl
2 

• E.g., 0/1 loss l h xi , yi = 1𝑦𝑖≠ℎ(𝑥𝑖) 

argminh1,h2    l(hl xi , yi)

ml

i=1

2

l=1

+ C agreement(h1 xi , h2 xi )

mu

i=1

 



Similarity Based Regularity  
[Blum&Chwala01], [ZhuGhahramaniLafferty03] 



Graph-based Methods 

E.g., handwritten digits [Zhu07]: 

• Assume we are given a pairwise similarity fnc and that 
very similar examples probably have the same label. 

• If we have a lot of labeled data, this suggests a 
Nearest-Neighbor type of algorithm. 

• If you have a lot of unlabeled data, perhaps can use 
them as “stepping stones”. 



Graph-based Methods 
Idea: construct a graph with edges between very similar 
examples. 

Unlabeled data can help “glue” the objects of the same 
class together. 



– Spectral partitioning 
– … 

Main Idea: 

• Might have also glued together in G 
examples of different classes. 

Often, transductive approach.  (Given L + U, output predictions on 
U). Are alllowed to output any labeling of 𝐿 ∪ 𝑈. 

• Construct graph G with edges 
between very similar examples. 

• Run a graph partitioning algorithm to 
separate the graph into pieces. 

Graph-based Methods 

Several methods: 
– Minimum/Multiway cut 
– Minimum “soft-cut”  



[ZhuGhahramaniLafferty’03] 
Gaussian Fields and Harmonic Function

>  vertices  V  are
the labeled and unlabeled instances

> The undirected edges E
connect instances i, j with weight wij

graph  G  ={V,  E, W}



How to Create the Graph 

still connects the graph 

3. Optionally put weights on (only) those edges 

 

4.  Tune  

• Empirically, the following works well: 

1. Compute distance between i, j 

2. For each i, connect to its kNN.  k very small but 



(0100000000) 

(1000000000) 

(0001000000) 

(0000000001) 

(0000000010) 

(0000000100) 

[ZhuGhahramaniLafferty’03] 
Gaussian Fields and Harmonic Function

Large wij implies a preference
for the predictions f(xi) and f(xj) 
to be the same.

To find the f 



33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Background

In much recent work, the loss term falls into one of three classes:

• Entropy minimization encourages the model to output confident predictions on unlabeled data;

• Consistency regularization encourages the model to produce the same output distribution when its inputs

are perturbed;

• Generic regularization encourages the model to generalize well and avoid overfitting the training data.

Many recent approaches for semi-supervised

learning add a loss term which is computed

on unlabeled data and encourages the model

to generalize better to unseen data.

Co-Training



1. Consistency Regularization

Background

Augment(x) is a stochastic transformation, so the two terms are not identical.



2. Entropy Minimization

Density assumption: classifier’s decision boundary should not pass through high-density regions.

Background



2. Entropy Minimization

• One way to enforce this is to require that the classifier output low-entropy predictions on unlabeled data.

This is done explicitly with a loss term which minimizes the entropy of pmodel(y | x; θ) for unlabeled data x.

Background



3. Generic Regularization

Regularization refers to the general approach of imposing a constraint on a model to make it harder to
memorize the training data and therefore hopefully make it generalize better to unseen data.

We use weight decay which penalizes the L2 norm of the model parameters.

Background



MixMatch

MixMatch introduces a unified loss term for unlabeled data that seamlessly reduces entropy while

maintaining consistency and remaining compatible with traditional regularization techniques.

𝑋 𝑈𝑝
Augmentation Augmentation

𝑋′𝑝′ 𝑞′ 𝑈′

Strong 
Augmented

Labeled 

Strong 
augmented
Unlabeled 

Labeled Unlabeled 

𝑋 𝑈𝑝

Labeled Unlabeled 

Given a batch X of labeled examples with one-hot targets (representing one of L possible labels) and an
equally-sized batch U of unlabeled examples.

MixMatch produces a processed batch of augmented labeled examples X′ and a batch of augmented
unlabeled examples with “guessed” labels U′.

U′ and X′ are then used in computing separate labeled and unlabeled loss terms



1. Data Augmentation

For each unlabeled example in U, MixMatch produces a “guess” for the example’s label using the model’s
predictions.

This guess is later used in the unsupervised loss term.

To do so, we compute the average of the model’s predicted class distributions across all the K
augmentations of ub by

Using data augmentation to obtain an artificial target for an unlabeled example is common in consistency

regularization methods.

MixMatch



2. Label Guessing and Sharpening

In generating a label guess, we perform one additional step inspired by the success of entropy minimization
in semi-supervised learning.

Given the average prediction over augmentations ത𝑞𝑏, we apply a sharpening function to reduce the entropy

of the label distribution.

MixMatch



MixUp



𝑋

𝑈

𝑝 ෢X𝑝
Augmentation

Augmented Labeled Labeled 

Unlabeled 

MixMatch Diagram 
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U′ and X′ are then used in computing separate labeled and unlabeled loss terms.

More formally, the combined loss L for semi-supervised learning is defined as

where H(p, q) is the cross-entropy between distributions p and q, and T, K, α, and U are hyperparameters.

MixMatch
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