Semi-Supervised Learning

Readings:

« Semi-Supervised Learning. Encyclopedia of Machine
Learning. Jerry Zhu, 2010

« Combining Labeled and Unlabeled Data with Co-
Training. Avrim Blum, Tom Mitchell. COLT 1998.



Machine Learning Paradigms

Supervised Learning

Unsupervised Learning

Semi-Supervised Learning
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Two Core Aspects of Supervised Learning

[ Algorithm Design. How to optimize? ] Computation

Automatically generate rules that do well on observed data.

E.g.: Ndive Bayes, logistic regression, SVM, Adaboost, etc.

[Confidence Bounds, Generalization J (Labeled) Data

Confidence for rule effectiveness on future data.

VC-dimension, Rademacher complexity, margin based bounds, etc.



Classic Paradigm Insufficient Nowadays

Modern applications: massive amounts of raw data.
Only atiny fractioncan be annotated by human experts.

D

Protein sequences Billions of webpages Images



Modern ML: New Learning Approaches

Modern applications: massive amounts of raw data.

Techniques that best utilize data, minimizing need for
expert/human intervention.

Paradigms where there has been great progress.

« Semi-supervised Learning, (Inter)active Learning.




Semi-Supervised Learning
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Semi-supervised Learning

* Major topic of research in ML.

Several methods have been developed to try to use
unlabeled data to improve performance, e.g.:

- Transductive SVM [Joachims '99] Test of time

- Co-training [Blum & Mitchell '98] |
awards at ICML!

- Graph-based methods [B&C01], [Z5L03]

Workshops [ICML ‘03, ICML' 05, ...]
Books: . Semi-Supervised Learning, MIT 2006

O. Chapelle, B. Scholkopf and A. Zien (eds)

* Introduction to Semi-Supervised Learning,
Morgan & Claypool, 2009 Zhu & Goldberg



Semi-supervised Learning

* Major topic of research in ML.

+ Several methods have been developed to try to use
unlabeled data to improve performance, e.qg.:

- Transductive SVM [Joachims '99] Test of time

- Co-training [Blum & Mitchell ‘98] |
awards at ICML!

- Graph-based methods [B&C01], [Z5L03]

Both wide spread applications and solid foundational
understanding!!!



Semi-supervised Learning

* Major topic of research in ML.

+ Several methods have been developed to try to use
unlabeled data to improve performance, e.g.:

- Transductive SVM [Joachims '99] Test of time

- Co-training [Blum & Mitchell '98] |
awards at ICML!

- Graph-based methods [B&C01], [Z5L03]

Today: discuss these methods.

Very interesting, they all exploit unlabeled data in
different, very interesting and creative ways.



Semi-supervised SVM
[Joachims '99]



Margins based reqgularity

Target goes through low density regions (large margin).

 assume we are looking for linear separator
* belief: should exist one with large separation
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Transductive Support Vector Machines

Optimize for the separator with large margin wrt labeled and
unlabeled data. [Joachims '99]
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Su:{Xl g ©00 :Xmu}



Transductive Support Vector Machines

Optimize for the separator with large margin wrt labeled and
unlabeled data. [Joachims '99]
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Transductive Support Vector Machines

Optimize for the separator with large margin wrt labeled and
unlabeled data. [Joachims '99]
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Find a labeling of the unlabeled sample and w s.t. w separates both
labeled and unlabeled data with maximum margin.



Transductive Support Vector Machines

Optimize for the separator with large margin wrt labeled and
unlabeled data. [Joachims '99]
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Find a labeling of the unlabeled sample and w s.t. w separates both
labeled and unlabeled data with maximum margin.



Transductive Support Vector Machines

Optimize for the separator with large margin wrt labeled and
unlabeled data.

I_nM: Sl:{(Xl' YI): --'l(Xm1' le)}
Su:{Xll ---:Xmu}
. 2 _
argmin,, |[w||” + CX; &+ C Xy &,
e yiw-x;=>1-§, forallie{1,..,m}
yaw - x, =1— &, forallue{1,..,m,}

Vo € {—1,1} forallu e {1,..,my}

NP-hard..... Convex only after you guessed the labels... too many
possible guesses...



Transductive Support Vector Machines

Optimize for the separator with large margin wrt labeled and
unlabeled data.

Heuristic (Joachims) high level idea:

First maximize margin over the labeled points

Use this to give initial labels to unlabeled points
based on this separator.

Try flipping labels of unlabeled points to see if doing
SO can increase margin

Keep going until no more improvements. Finds a locally-optimal solution.



Co-fraining
[Blum & Mitchell ‘98]

Different type of underlying regularity assumption:
Consistency or Agreement Between Parts



Co-training: Self-consistency

Agreement between two parts : co-training [Blum-Mitchell98].

- examples contain two sufficient sets of features, x = { x;, x, )

- belief: the parts are consistent, i.e. 3 ¢;, ¢, s.t. ¢;(x1)=C,(X,)=c"(x)

For example, if we want to classify web pages: x = ( x;, X, )
as faculty member homepage or not

Prof. Avrim Blum My Advisor

Prof. Avrim Blum My Advisor

x - Link info & Text info x,- Text info

e

X,- Link info




Iterative Co-Training

Idea: Use small labeled sample to learn initial rules.
« E.g., "my advisor” pointing to a page is a good indicator it is a
faculty home page.

« E.g., "I am teaching” on a page is a good indicator it is a faculty
home page.

ea: Use unlabeled data to propagate learned informa‘rio%i
ovo

Avrim Blum's home page Page 1 of 1 S

Avrim Blum
Professor of Computer Science

Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

avrim at cs.cmu.edu

my advisor

Office: Wean 4130
Tel: (412) 268-6452
¥ 76

ole Stenger, Wean 4116, 268-3779
Check out our new faculty members Ryan O'Donnell and Luis von Ahn.

My main research interests are machine learning theory, approximation algorithms, on-line algorithms,
and algorithmic game theory. I was/am on the Program Committees for FOCS 2008 (Symp. Foundations
of Computer Science), ACM-EC 2008 (Electronic Commerce), and COLT 2007 (Conference on
Learning Theory), and was recently local organizer for COLT 2006 and FOCS 2005. I also co-organized
the 2005 Found. of C fatl Workshop on Algorithmic Game Theory and
Metric Embeddings. A while back I served as Program Chair for FOCS 2000 and I've done some work
in AI Planning. For more information on my research, see the publications and research interests links
below. I am also affiliated with the Machine Learning department

— am currently (Spring 2008) teaching 13-859(B) Machine Learning Theory- |

@ Publications @ ALADDIN, Algorithms and Complexity Group
@ Research Interests @ ACO Program Home Page

@ Survey Talks @ Theory Seminars, Theory lunch ML lunch

@ Courses @ Family pictures, Other pictures, My Startup Page

@ My Tutorial on Machine Learning Theory given at FOCS 2003 and a short essay

My advisees: Aaron Roth, Katrina Ligett, Nina Balcan, Mugizi Robert Rwebangira, Shobha
Venkataraman

Past advisees: Prasad Chalasani, Santosh Vempala, Carl Burch, Adam Kalai, John Langford, Nikhil
Bansal, Martin Zinkevich, Shuchi Chawla, Brendan McMahan




Iterative Co-Training

Idea: Use small labeled sample to learn initial rules.

« E.g., "my advisor” pointing to a page is a good indicator it is a
faculty home page.

« E.g., "I am teaching” on a page is a good indicator it is a faculty
home page.

Idea: Use unlabeled data to propagate learned information] =
OVO
The co-training algorithm trains two predictors:

h(1) --> x(1) h(2) --> x(2)

If h(1) confidently predicts the label of an unlabeled instance x
then the instance-label pair (x, h(1)(x)) is added to h(2)'s
labeled data, and vice versa.

Note this promotes h(1) and h(2) to predict the same on x.



Co-training/Multi-view SSL: Direct
Optimization of Agreement
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Each of them has small Regularizer to encourage
labeled error agreement over unlabeled dat



Co-training/Multi-view SSL: Direct
Optimization of Agreement

I_nM: Sl:{(Xl' Y1)l "'I(Xm1' le )}

Su:{Xl ) e ’Xmu

2 m,;

argminy_ p, Z z 1(hy(x;),y;) + C Z agreement(h, (x;),h,(x;))

=1 i=1

e 1(h(x;),V;) loss function
E.g., square loss 1(h(x;),y;) = (y; — h(x}))?
E.g., 0/1 loss 1(h(x;),yi) = 1. 2n(xy)



Similarity Based Regularity

[Blum&Chwala01], [ZhuGhahramaniLafferty03]



Graph-based Methods

« Assume we are given a pairwise similarity fnc and that
very similar examples probably have the same label.

« If we have alot of labeled data, this suggests a
Nearest-Neighbor type of algorithm.

« If you have a lot of unlabeled data, perhaps can use
them as "stepping stones".

E.g., handwritten digits [ZhuO7]:

SA AL A
not similar ‘Indirectly’ similar

with stepping stones




Graph-based Methods

Idea: construct a graph with edges between very similar
examples.

Unlabeled data can help "glue” the objects of the same
class together.



Graph-based Methods

Often, tfransductive approach. (Given L + U, output predictions on
U). Are alllowed to output any labeling of L U U.

Main Idea: |
 Construct graph G with edges 2 e

between very similar examples. \ /f 4 il
* Might have also glued together in G ‘9\/ 8\ //\4
\ nine

examples of different classes. o3

* Run a graph partitioning algorithm to \ \ /
) ) /—7
separate the graph into pieces. .., — \ G

Several methods:
- Minimum/Multiway cut
- Minimum "soft-cut”

- Spectral partitioning



Gaussian Fields and Harmonic Function
[ZhuGhahramaniLafferty'03]

graph G ={V, E, W}

> vertices V are b o — W
the labeled and unlabeled instances \ /f 4 /
> The undirected edges E ‘;\/ 8\ \54
connect instances i, j with weight wij ,2—3/ \7_;%
\ /
e q
one/ // 7\ 6/ \0
\/ N



How to Create the Graph

-
a /\f\\ N\
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Empirically, the following works well:

1. Compute distance between i, |

2 ~ O
> N \'\ ."
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2. For each i, connect to its kKNN. k very small but

still connects the graph

3. Optionally put weights on (only) those edges

wij = exp (—||x; — x;]|?/0?)

4 Tuneo



Gaussian Fields and Harmonic Function
[ZhuGhahramanilLafferty'03]

Large wij implies a preference (0100000000) (0000000100)
C . : (0001000000)
for the predictions f(xi) and f(xj) ,,g o — o
’rol be the same. \ y, / 4 el
+u , / & \
D> wig || x)— ()| N
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33rd Conference on Neural Information Processing Systems (NeurlPS 2019), Vancouver, Canada.

MixMatch: A Holistic Approach to
Semi-Supervised Learning

David Berthelot Nicholas Carlini Ian Goodfellow
Google Research Google Research Work done at Google
dberth@google. com ncarlini@google.com ian-academic@mailfence.com
Avital Oliver Nicolas Papernot Colin Raffel
Google Research Google Research Google Research

avitalo@google.com papernot@google.com craffel@google.com



Background

. . Co-Training
Many recent approaches for semi-supervised

learning add a loss term which is computed v my,
on unlabeled data and encourages the model argminhl, +@ment(hl(@
1=1 i= i=1

to generalize better to unseen data.

Each of them has small Regularizer to encourage
labeled error agreement over unlabeled dat

In much recent work, the loss term falls into one of three classes:
- Entropy minimization encourages the model to output confident predictions on unlabeled data;

- Consistency regularization encourages the model to produce the same output distribution when its inputs
are perturbed;

- Genericregularization encourages the model to generalize well and avoid overfitting the training data.




Background

1. Consistency Regularization

ar i
II-I | T

Dog Cat Fish Frog

Dog Cat Fish Frog

|Pmodel (v | Augment(x); 8) — Pmodel(y | Augment(x); 6’)||g

Augment(x) is a stochastic transformation, so the two terms are not identical.



T
Background

2. Entropy Minimization

Density assumption: classifier's decision boundary should not pass through high-density regions.

x s
—— Supervised algorithm decision boundary

———— Optimal decision boundary




Background

2. Entropy Minimization
« One way to enforce this is to require that the classifier output low-entropy predictions on unlabeled data.

This is done explicitly with a loss term which minimizes the entropy of p,.,4.(V / X; 6) for unlabeled data x.

- Minimize the entropy of unlabeled data.

[0.07, 0.99]



Background

3. Generic Regularization

Regularization refers to the general approach of imposing a constraint on a model to make it harder to
memorize the training data and therefore hopefully make it generalize better to unseen data.

We use weight decay which penalizes the L, norm of the model parameters.

mﬁin Z E(P; pmodel(ylw;g)) + )\HQHE

x,peX

loss

20 40 60 80 100
epochs



- ___________________________________________________________________________________
MixMatch

MixMatch introduces a unified loss term for unlabeled data that seamlessly reduces entropy while
maintaining consistency and remaining compatible with traditional regularization techniques.

Given a batch X of labeled examples with one-hot targets (representing one of L possible labels) and an
equally-sized batch U of unlabeled examples.

p X u

Labeled Unlabeled

MixMatch produces a processed batch of augmented labeled examples X’ and a batch of augmented
unlabeled examples with “guessed” labels U’

Strong
Augmentation P Augmented Augmentation - Strong
p X 'I X Labeled U ” augmented
Unlabeled

Labeled Unlabeled

U’and X’are then used in computing separate labeled and unlabeled loss terms



MixMatch

1. Data Augmentation

For each unlabeled example in U, MixMatch produces a “guess” for the example's label using the model’s

predictions.

This guess is later used in the unsupervised loss term.

/ ‘_..[ Classify ] [n:mu \

- -
e e

. Kaugmentations ... i} >

-
-

Unlabeled\ ‘ —-[ Classify ] l.‘ /

To do so, we compute the average of the model's predicted class distributions across all the K

augmentations of u, by

Using data augmentation to obtain an artificial target for an unlabeled example is common in consistency

regularization methods.
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Sharpen




e
MixMatch
2. Label Guessing and Sharpening

In generating a label guess, we perform one additional step inspired by the success of entropy minimization
in semi-supervised learning.

Given the average prediction over augmentations g,, we apply a sharpening function to reduce the entropy
of the label distribution.

The effect of sharpening on randomly generated distribution
T=10 T=05 T=01
07
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Sharpen(p, 7'); := p,iT/ § pr



MixUp

Image

Label

[1.0, 0.0]
cat dog

5
|

/\il?i -+ (1 - /\).’IIj,
Ayi + (1 = A)y;,

<
|

where A € [0,1] is a random number

[0.0, 1.0]
cat dog

[0.7, 0.3]

cat dog




MixMatch Diagram

Labeled Augmented Labeled
Augmentation —
p X - *p | X
U

Unlabeled



MixMatch Diagram

Labeled Augmented Labeled
Augmentation R —
| X - »p X

U K Augmentations
U

Unlabeled



MixMatch Diagram

Labeled Augmented Labeled
Augmentation R —
| X - »p X

K Augmentations

[[Hhu i A
U 11 77 —>[ Classify ]—>\ @]ﬂ “i-Li_' q U

.,‘ /' Average Sharpen

Unlabeled

Augmented Unlabeled



MixMatch Diagram

Labeled Augmented Labeled
Augmentation —
p X : »p X

Concatenation
and Shuffling
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MixMatch Diagram
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MixMatch Diagram
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- ___________________________________________________________________________________
MixMatch

U’and X’are then used in computing separate labeled and unlabeled loss terms.

More formally, the combined loss L for semi-supervised learning is defined as

XU = MixMatch(X, U, T. K, a)

1

||

1

L= L]

S g~ Puoder(y | u:0)]13

u,qeU’

Z H(papmodel(y ‘ 35';9)) + )\L{
z,peEX’

where H(p, g) is the cross-entropy between distributions pand g, and T, K, a, and U are hyperparameters.



Algorithm 1 MixMatch takes a batch of labeled data X and a batch of unlabeled data ¢/ and produces
a collection X’ (resp. U") of processed labeled examples (resp. unlabeled with guessed labels).

f— e —
ol D =

—
o =

SPRXIAINAELEN

Input: Batch of labeled examples and their one-hot labels X = ((x4.p5);0 € (1,..., B)), batch of

unlabeled examples U = (up; b € (1.. ... )) kharpening temperature 7', number of augmentations K.
Beta distribution parameter o for MixUp.
forb=1to B do

Tp = Augment(xp) // Apply data augmentation to xy

for £ =1to K do

up . = Augment(uy) // Apply k" round of data augmentation to uy,
end for
Jp = % > & Pmodel(¥ | Up,i;0) // Compute average predictions across all augmentations of uy,
gp = Sharpen(qp,T") // Apply temperature sharpening to the average prediction (see eq. l )
end for
X = ((:f:b pp):be(1,... ,B)) / | Augmented labeled examples and their labels
U = ((ub kqp)ibE(1,..., B) k € ( ..... K )) /| Augmented unlabeled examples, guessed labels

W = Shuﬂie((‘oncat(ﬁ;’ ZA’)) /| Combine and shuffle labeled and unlabeled data

. X = (MixUp(&;, Wi);i € (l ..... |£’C’ )) // Apply MixUp 1o labeled data and entries from W
: U = (MixUp (Z/f W. |X|) 1€ (1,..., |Z/f|)) // Apply MixUp to unlabeled data and the rest of W
: return X', U’
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