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Nonnegative Matrix Factorization Book

Nonnegative matrix factorization (NMF) in its modern form has become a standard
tool in the analysis of high-dimensional data sets. This book provides a comprehensive
and up-to-date account of the most important aspects of the NMF problem and is the
Nonnegative Matrix first to detail its theoretical aspects, including geometric interpretation, nonnegative

— . rank, complexity, and uniqueness. It explains why understanding these theoretical
F&LIOI"]Z&UOI] insights is key to using this computational tool effectively and meaningfully. The book
also presents models, algorithms and applications of NMF. [t contains 2 parts and is
divided into @ chapters:
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1. Introduction

Part | - Exact factorizations
2. Exact NMF
3. Nonnegative Rank
4. |dentifiability
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Part Il - Approximate factorizations
5. Models
6. Computational Complexity of NMF
/. Near-separable NMF
8. Iterative algorithms for NMF Nicolas Gillis

Nicolas Gillis
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9. Applications
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% Nonnegative Matrix Factorization
% Deep NMFs

= Deep [Encoder] NMF

= Deep Autoencoder-like NMF
% Graph-based NMFs

= Shallow models

= Deep models
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Shallow Matrix Factorization

* NMEF as a data representation model
*  Orthogonal NMF



Basic NMF 2/32

Learning the Parts of Objects by Non-negative Matrix Factorization
Nature 1999

X

]
=

Xin € RZY, Wy, € RZY, Hywy € R2Y, and v < min(m, n).
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Least Squares NMF 4/32

Learning the Parts of Objects by Non-negative Matrix Factorization
Nature 1999

d n
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Orthogonal NMF 5/32

On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering
ICDM 2005

min|| X — WH|?% st. (W,H)>0,HH' =1.
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Deep NMFs

*  From Multi-layer to Deep NMF

* Encoder-Decoder NMF
*  Deep Autoencoder-like NMF



From Multi-layer to Deep NMF 7/32

X ~ W1H1

H1 ~ W2H2 Hp—l ~ W}JHP

H, ; ~ W,H, H, ~ Ws...W,H,

\l, Hl ~ WQ. . 'WPHP’
X~ W1W2. . 'WPHP
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Deep NMF 8/32

A Deep Semi-NMF Model for Learning Hidden Representations
G. Trigeorgis, K. Bousmalis, S. Zafeiriou, and B. Schuller
International conference on machine learning (ICML) 2014
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Robust Adversarial Matrix Completion 9/32

“Elastic Adversarial Deep Nonnegative Matrix Factorization for Matrix Completion"
S.A. Seyedi, F. Akhlaghian, A. Lotfi, N. Salahian, and J. Chavoshinejad
Information Sciences ,2023
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max_min 76 (V+R= Wi W,H,)|u - MR}, st V+R>0W,>0H,>0Yi=1.p
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Adversarial Link Prediction 10/32

“Link Prediction by Adversarial Nonnegative Matrix Factorization"
R. Mahmoodi, S.A. Seyedi, F. Akhlaghian, and A. Abdolalhpouri
Knowledge-Based Systems, 2023

Nonnegative Matrix Factorization
k1 mn
/ R
z
n m ;
. . - 2 2 . T p P , :
min IﬂI%KHA + R—-WH|% - A|R||z+aTe(HLH ") : R : A | s |z
. 2 2 B g !
+ B(IWE + [ H| %) g r
I
| '/T : “regulariztion |

“Enhancing link prediction through adversarial training in deep Nonnegative Matrix Factorization"
R. Mahmoodi, S.A. Seyedi, A. Abdolalhpouri, and F. Akhlaghian
Engineering Application in Artificial Intelligence, 2024

min max|As + R — W, --- WiH |7 = MRl21 + B(|Wi.. WillE + | H,' [F)  st. W;>0,H; >0
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Encoder-Decoder NMF 11/32

A Non-negative Symmetric Encoder-Decoder Approach for Community Detection
The Conference on Information and Knowledge Management (CIKM) 2017

Decoder
X ~WH
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Encoder-Decoder NMF 11/32

A Non-negative Symmetric Encoder-Decoder Approach for Community Detection
The Conference on Information and Knowledge Management (CIKM) 2017

Decoder Encoder
X ~WH Ha~W'X
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Encoder-Decoder NMF 11/32

A Non-negative Symmetric Encoder-Decoder Approach for Community Detection
The Conference on Information and Knowledge Management (CIKM) 2017

Decoder Encoder
- Sixa=WW'
Projective NMF: X ~ WIW ' X X~ SX
Decoder Encoder
X H =~ W X
X = W X
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Encoder-Decoder NMF 11/32

A Non-negative Symmetric Encoder-Decoder Approach for Community Detection
The Conference on Information and Knowledge Management (CIKM) 2017

Decoder Encoder
X ~WH H~W'X

Projective NMF: X ~ WIW ' X

Encoder
Decoder

X H = W' X
X = W X

min|| X — WH|?+ |H - WX|?% st. (W,H)>0.
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Unsupervised Feature Selection 12/32

“Encoder-Decoder Factorization for Unsupervised Feature Selection”
M. Mozafari, S.A. Seyedi, F. Akhlaghian, and A. Pirmohammaiani
Information Sciences, 2024

X~WH X = I__J[.-'I__J[.-’TX H= H-TTX
Psuedo-Label -
Matrix ~ W X
Data Fﬁa‘zu_re H Data
Matrix atrx Matrix
X ~| W X

Decoder NMF Encoder NMF

min || X — WHI|% +||H-W'X||%+ NIr(HLH") +~||W|21, st. W.H>0HH' =1,
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Encoder-Decoder NMF with B-Divergence 13/32

“Semantic Encoder-Decoder Nonnegative Matrix Factorization with Kullback-Leibler Divergence"
S. Soleymanbaigi, S.A. Seyedi, F. Akhlaghian, and F. Daneshfar

[International Journal of Machine Learning and Cybernetics — First Revision]

min Dy (X|W H) + Dy (HIW ' X) + ADk(S|WQ) @
W.H.Q
X
Data Matrix T Cluster Matrix éﬁ:?;i} Data Matrix
X al H W X

Semantic

Matrix
5

“Data Clustering by Encoder-Decoder Nonnegative Matrix Factorization with B-Divergence"
S. Soleymanbaigi, S.A. Seyedi,,F. Akhlaghian, and F. Daneshfar

[Pattern Recognition — First Revision]

LW,H)=Ds(X,WH)+ A\Ds(H W' X)+~Tr(HLH")
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Deep Encoder-Decoder NMF 14/32

Decoder Encoder
X ~ W, H; H ~W,X
H, ~ W>H, H, ~ W, H;
H, ; ~ W,H, p R W, H,
} s
X ~ WiW,...W,H, p R W, W) WX,
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Deep Encoder-Decoder NMF 15/32

Deep Autoencoder-like Nonnegative Matrix Factorization for Community Detection
The Conference on Information and Knowledge Management (CIKM) 2018
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Extended models:
+ Structural Deep Autoencoder-like Nonnegative Matrix Factorization for Community Detection, Applied Soft Computing 2020
« Community detection in networks through a deep robust auto-encoder nonnegative matrix factorization, Engineering Applications of Artificial Intelligence 2023
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Data Representation / Clustering 16/32

“Deep Autoencoder-Like NMF with Contrastive Regularization and Feature Relationship Preservation"
N. Salahian, F. Akhlaghian, S.A. Seyedi, and J. Chavoshinejad
Expert Systems with Applications, 2023
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Graph-based NMFs

Graph clustering

Symmetric NMF

Asymmetric NMF

Interpretability of Asymmetric NMF
Regularized Asymmetric NMFs



Basic NMF on graph 17/32

min||A — WH]|%2, s.t. (W,H)>0.
W,H

X H

0
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Graph clustering 18/32

< Definition: Partitioning graph nodes into clusters with dense intra-cluster connections and sparse inter-
cluster connections.
< Purpose: Identifying and grouping similar nodes to reveal the graph's structure.

<+ Applications: Used in social networks, biology, recommendation systems, and image segmentation.
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Symmetric NMF 19/32

Community discovery using nonnegative matrix factorization
Data Mining and Knowledge Discovery 2011

non o 2
min||A — HH'2=Y )} (Aij - h@hU)T) , st. (H)>0.
i=1j=1
A H
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Symmetric NMF 20/32

Community discovery using nonnegative matrix factorization

Data Mining and Knowledge Discovery 2011 i
min||A — HH " ||%
H
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“S*NMF: Self-Supervised Semi-Supervised Nonnegative Matrix Factorization for Data Clustering"
J. Chavoshinejad, S.A. Seyedi , F. Akhlaghian, and N. Salahian
Pattern Recognition, 2023

Self-Supervision

— | SSNMF; ———{ Membership,
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Unsupervised

———» SSNMF, ———»{ Membership,

I'Il%ﬂ § ﬂ:’—n (”A _ Eml’r;["i" +}'ll"-D'EJ (Em[’n—E]HI +;'k2||8 © r‘m“l) s.t. al= 1: x, [‘m 2 0 “E-"l'ﬂ,
cx, e
m=1

Self-/Semi-supervised
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Asymmetric NMF or Symmetric NMTF 22/32

Community discovery using nonnegative matrix factorization
Data Mining and Knowledge Discovery 2011
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Asymmetric NMF or Symmetric NMTF 23/32

Community discovery using nonnegative matrix factorization
Data Mining and Knowledge Discovery 2011
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Interpretability of Asymmetric NMF 24/32

Community discovery using nonnegative matrix factorization

Data Mining and Knowledge Discovery 2011 minHA — HWH' ||%_~ :
W, H
1
A
I oI I IV
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2 | 4e-01
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N, 7 4601
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H
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Interpretability of Asymmetric NMF 24/32

Community discovery using nonnegative matrix factorization

Data Mining and Knowledge Discovery 2011 minHA —_ HWH' ||%: :
W H
|
I II III IV
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Regularized Asymmetric NMF 25/32

Regularized Asymmetric Semi-nonnegative Matrix Factorization for Directed Graph Clustering
R. Abdollahi, A. Seyedi, M. Noorimehr
ICCKE 2020

min | A — HW.H'"|7 +)\Tx(H'L'H), st. H>0

Towards Cohesion-Fairness Harmony - Contrastive Regularization in Individual Fair Graph Clustering

Ghodsi, A. Seyedi, and E. Ntoutsi
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 2024
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Deep Asymmetric NMF for
Directed/Undirected graph clustering

Deep Symmetric NMF

Multi-layer Asymmetric NMF

Deep Asymmetric NMF

Interpretability of Deep Asymmetric NMF



Deep Symmetric NMF 26/32

Deep Symmetric Matrix Factorization
P. De Handschutter, N. Gillis, and W. Blekic
European Signal Processing Conference (EUSIPCO) 2023
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Pattern Recognition 148 (2024) 110179

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

. . . . . . Check for
Deep asymmetric nonnegative matrix factorization for graph clustering updais
Akram Hajiveiseh, Seyed Amjad Seyedi, Fardin Akhlaghian Tab*
Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran
ARTICLE INFO ABSTRACT
Keywords: Graph clustering is a fundamental technique in machine learning that has widespread applications in various
Nonnegative matrix factorization fields. Deep Nonnegative Matrix Factorization (DNMF) was recently emerged to cope with the extraction
Deep learning. of several layers of features, and it has been demonstrated to achieve remarkable results on unsupervised
Graph clustering tasks. While DNMF has been applied for analyzing graphs, the effectiveness of the current DNMF approaches

Directed graph for graph clustering is generally unsatisfactory: these methods are intrinsically data representation models,

and their objective functions do not capture cluster structures, also ignores direction which is crucial in

the directed graph clustering problems. To overcome these downsides, this paper proposes a graph-specific
DNMF model based on the Asvmmetric NMF which can handle undirected and directed eranhs. Insnired bv

* Corresponding author.
E-mail addresses: akram.hajiveiseh@uok.ac.ir (A. Hajiveiseh), amjadseyedi@uok.ac.ir (S.A. Seyedi), f.akhlaghian@uok.ac.ir (F. Akhlaghian Tab).

https://doi.org/10.1016/j.patcog.2023.110179
Received 19 March 2023; Received in revised form 29 September 2023; Accepted 29 November 2023

Available online 2 December 2023
0031-3203/© 2023 Elsevier Ltd. All rights reserved.



Multi-layer Asymmetric NMF
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Deep Asymmetric NMF
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Interpretability of Deep Asymmetric NMF




Interpretability of Deep Asymmetric NMF
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Interpretability of Deep Asymmetric NMF

Input graph
& y g W
8yl
P
rf ; ¢ A
@ o @@@
g% @r
W 2
o %4 @
0
‘®: Q
Second-level summarized graph First-level summarized graph

(cluster-level)



Graph regularization 28/32

“Deep Asymmetric Nonnegative Matrix Factorization for Graph Clustering"

A. Hajiveiseh, S.A. Seyedi, and F. Akhlaghian

Pattern Recognition, 2024

: T T
HIfl,l‘g‘lfpﬁ =|As - H,.. HW,H, .. .H, 1% + AR(C

st. W,>0H; >0,Vi=1,2,.

Google PageRank

1 Ai,j
Ci = 5(1 —P)+PZW%‘

Cij=

| Q
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Graph regularization 29/32

“Deep Asymmetric Nonnegative Matrix Factorization for Graph Clustering"
A. Hajiveiseh, S.A. Seyedi, and F. Akhlaghian
Pattern Recognition, 2024

R=>" i —4p;|’Ci; =2Txe(¥DE¥T) - Te(¥CET) - Tr(¥C' ¥ )
i=1 j=1

. ‘I’ — ?:1 H?j

(min [[As — H.. HW,H . H|};+A2Te(¥D¥") - Tr(¥CE ") - Tr(¥C' ¥ )]

st. H;,W,>0,Vie{l,...,p}.
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Algorithm 30/32

Input: The adjacency matrix of graph G, A; layer size of each layer, r;; scale parameter 7:
regularization parameter A: dumping factor p = 0.85;
Output: W; (1 <i<p),H; (1 <i<p), and the cluster matrix ¥;

1: Constructing the second-order similarity matrix S by ;
2: Constructing the input graph Ag by Ag = A +1)S;
3: Constructing the influence score matrix C' by :
4: > Pre-training process:

5: Wi, Hy < ShallowAsNMF(Ag.r1):

6: for . =2 to p do

7. W,,H,; + ShallowAsNMF(W,_1,r;);

8: end for

9: > Fine-tuning process:
10: while convergence not reached do
11: fori:=1topdo

_ i—1
12: W, |+ H'rzl HT(‘IJU — I)
13: i Hi:z‘.jul H (®),.1 < I);
1
_ - ] U (ATOW,+ATW, | +ACT+ACTW)P] | 4
14 Update H; by H; < H; © U (YW, T YW, W, T W, {2 DY) &, |
15: \I"i — \IJ-L'_lH-i;
v A, : . T
16: Update W; by W, «+ W, ® TTVW, YT, (1 < p, optional) or by W, + W, ® \I:TgvégT o

(i =p):
17:  end for
18: end while
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Brain Networks Analysis 31/32

<+ Studies functional and structural brain connections using fMRI data.

“* Helps understand brain functions and neurological diseases by uncovering patterns in
networks.

Why Deep NMF?

% Scalability & Flexibility: Handles high-dimensional brain data and discovers key network
features.

“» Enhanced Interpretability: Nonnegative factorizations offer clearer insights, ideal for
understanding complex brain regions and relationships.
Deep NMF’s Role in Brain Network Analysis

< Dimensionality Reduction: Learns low-dimensional representations to identify key regions and
patterns linked to diseases or cognitive functions.

< Unsupervised Learning: Discovers hidden patterns and new brain network structures without
labeled data.
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Brain Networks Analysis 32/32

NeuroGraph datasets (HCP-Task, HCP-Gender, and HCP-Age)
» The dataset A = {Aq, Ay,..., Ay} consists of n individual samples.

» Each sample A;j is represented by a symmetric correlation matrix A; € R™*", where m is the
number of Regions of Interest (ROIs).

Group-Level Atlas
Summarizing Regions
of Interest (ROI)

{/If\‘
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